Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Chris Tyler
- Adam M Guss
- Justin West
- Peter Wang
- Rama K Vasudevan
- Andrzej Nycz
- Ritin Mathews
- Sergei V Kalinin
- Yongtao Liu
- Blane Fillingim
- Chris Masuo
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Joshua Vaughan
- Kyle Kelley
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Vincent Paquit
- William Carter
- Xiaohan Yang
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Alex Walters
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Carrie Eckert
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- Corson Cramer
- Craig Blue
- Emma Betters
- Fred List III
- Gerald Tuskan
- Gerd Duscher
- Gordon Robertson
- Greg Corson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- James Klett
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Kyle Davis
- Liam Collins
- Liam White
- Liangyu Qian
- Luke Meyer
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Paul Abraham
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Serena Chen
- Singanallur Venkatakrishnan
- Stephen Jesse
- Steve Bullock
- Steven Guzorek
- Sumner Harris
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Udaya C Kalluri
- Utkarsh Pratiush
- Vilmos Kertesz
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Yang Liu
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.