Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Andrzej Nycz
- Josh Michener
- Kuntal De
- Kyle Kelley
- Mike Zach
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Andrew F May
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Ben Garrison
- Biruk A Feyissa
- Brad Johnson
- Bruce Moyer
- Carrie Eckert
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gerald Tuskan
- Gerd Duscher
- Hsin Wang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Klett
- Jay D Huenemann
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Tannous
- John F Cahill
- John Lindahl
- Justin Griswold
- Kyle Davis
- Laetitia H Delmau
- Liam Collins
- Liangyu Qian
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Paul Abraham
- Sai Mani Prudhvi Valleti
- Sandra Davern
- Serena Chen
- Stephen Jesse
- Sumner Harris
- Tony Beard
- Utkarsh Pratiush
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.