Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Blane Fillingim
- Brian Post
- Diana E Hun
- Kyle Kelley
- Lauren Heinrich
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Anton Ievlev
- Arpan Biswas
- Bryan Maldonado Puente
- Corey Cooke
- Gerd Duscher
- Gina Accawi
- Gurneesh Jatana
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Michael Kirka
- Neus Domingo Marimon
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Peter Wang
- Ramanan Sankaran
- Ryan Kerekes
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vimal Ramanuj
- Wenjun Ge

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.