Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Alexey Serov
- Jaswinder Sharma
- Mingyan Li
- Sam Hollifield
- Xiang Lyu
- Amit K Naskar
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Weber
- Christopher Rouleau
- Costas Tsouris
- Gabriel Veith
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- James Szybist
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junbin Choi
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Kyle Kelley
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Marm Dixit
- Mary A Adkisson
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nihal Kanbargi
- Oscar Martinez
- Radu Custelcean
- Ritu Sahore
- Steven Randolph
- Todd Toops
- T Oesch

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.