Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Yong Chae Lim
- Zhili Feng
- Alexey Serov
- Jaswinder Sharma
- Jian Chen
- Rangasayee Kannan
- Wei Zhang
- Xiang Lyu
- Adam Stevens
- Amit K Naskar
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Bryan Lim
- Christopher Rouleau
- Costas Tsouris
- Dali Wang
- Gabriel Veith
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Ilia N Ivanov
- Ivan Vlassiouk
- James Szybist
- Jiheon Jun
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Kyle Kelley
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nihal Kanbargi
- Peeyush Nandwana
- Priyanshi Agrawal
- Radu Custelcean
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Todd Toops
- Tomas Grejtak
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.