Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Amit K Naskar
- Annetta Burger
- Ben LaRiviere
- Beth L Armstrong
- Bogdan Dryzhakov
- Carter Christopher
- Chance C Brown
- Christopher Rouleau
- Costas Tsouris
- David L Wood III
- Debraj De
- Gabriel Veith
- Gautam Malviya Thakur
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- Ilia N Ivanov
- Ivan Vlassiouk
- James Gaboardi
- James Szybist
- Jesse McGaha
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Kevin Sparks
- Khryslyn G Araño
- Kyle Kelley
- Liz McBride
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Radu Custelcean
- Ritu Sahore
- Steven Randolph
- Todd Thomas
- Todd Toops
- Xiuling Nie
- Yaocai Bai
- Zhijia Du

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.