Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Mingyan Li
- Sam Hollifield
- Alex Roschli
- Bogdan Dryzhakov
- Brian Weber
- Christopher Rouleau
- Costas Tsouris
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- Jeremy Malmstead
- Jong K Keum
- Joseph Olatt
- Kevin Spakes
- Kitty K Mccracken
- Kunal Mondal
- Kyle Kelley
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Mengdawn Cheng
- Mina Yoon
- Oluwafemi Oyedeji
- Oscar Martinez
- Paula Cable-Dunlap
- Radu Custelcean
- Soydan Ozcan
- Steven Randolph
- T Oesch
- Tyler Smith
- Xianhui Zhao

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.