Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Ruhul Amin
- Bogdan Dryzhakov
- Bruce Moyer
- Christopher Rouleau
- Costas Tsouris
- David L Wood III
- Debjani Pal
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- Ilia N Ivanov
- Ivan Vlassiouk
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- Jong K Keum
- Junbin Choi
- Justin Griswold
- Kuntal De
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Lu Yu
- Marm Dixit
- Mike Zach
- Mina Yoon
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Radu Custelcean
- Sandra Davern
- Steven Randolph
- Yaocai Bai
- Zhijia Du

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.