Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ying Yang
- Alice Perrin
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- Bogdan Dryzhakov
- Bruce A Pint
- Christopher Ledford
- Christopher Rouleau
- Costas Tsouris
- David S Parker
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- James A Haynes
- Jong K Keum
- Kyle Kelley
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ramanan Sankaran
- Ryan Dehoff
- Steven Randolph
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Vimal Ramanuj
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- Xiang Chen
- Yan-Ru Lin

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.