Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Adam M Guss
- Kyle Kelley
- Rama K Vasudevan
- Singanallur Venkatakrishnan
- Vincent Paquit
- Amir K Ziabari
- Josh Michener
- Philip Bingham
- Ryan Dehoff
- Sergei V Kalinin
- Stephen Jesse
- Xiaohan Yang
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Andrzej Nycz
- Anton Ievlev
- Austin Carroll
- Bogdan Dryzhakov
- Carrie Eckert
- Clay Leach
- Diana E Hun
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jewook Park
- Joanna Tannous
- John F Cahill
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Neus Domingo Marimon
- Obaid Rahman
- Olga S Ovchinnikova
- Ondrej Dyck
- Paul Abraham
- Philip Boudreaux
- Saban Hus
- Serena Chen
- Steven Randolph
- Udaya C Kalluri
- Vilmos Kertesz
- Yang Liu
- Yongtao Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.