Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Amit Shyam
- Ying Yang
- Alex Plotkowski
- Kyle Kelley
- Rama K Vasudevan
- Ryan Dehoff
- Alice Perrin
- James A Haynes
- Sergei V Kalinin
- Stephen Jesse
- Steven J Zinkle
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Adam Stevens
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Post
- Bruce A Pint
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Jong K Keum
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yongtao Liu
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.