Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ying Yang
- Amit K Naskar
- Kyle Kelley
- Rama K Vasudevan
- Alice Perrin
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Sergei V Kalinin
- Stephen Jesse
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amit Shyam
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Benjamin L Doughty
- Bogdan Dryzhakov
- Bruce A Pint
- Christopher Bowland
- Christopher Ledford
- Costas Tsouris
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- James A Haynes
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Mina Yoon
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Robert E Norris Jr
- Ryan Dehoff
- Saban Hus
- Santanu Roy
- Steven Randolph
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yongtao Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.