Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Amit K Naskar
- Kyle Kelley
- Rama K Vasudevan
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sergei V Kalinin
- Stephen Jesse
- Stephen M Killough
- Vincent Paquit
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Benjamin L Doughty
- Bogdan Dryzhakov
- Bryan Maldonado Puente
- Christopher Bowland
- Corey Cooke
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Neus Domingo Marimon
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Robert E Norris Jr
- Ryan Kerekes
- Saban Hus
- Sally Ghanem
- Santanu Roy
- Steven Randolph
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Yongtao Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.