Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Amit K Naskar
- Srikanth Yoginath
- Alice Perrin
- James J Nutaro
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Steven J Zinkle
- Sudip Seal
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Ali Passian
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Bruce A Pint
- Bryan Lim
- Christopher Bowland
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Holly Humphrey
- James A Haynes
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Michael Kirka
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Radu Custelcean
- Rangasayee Kannan
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.