Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Amit K Naskar
- Jaswinder Sharma
- Srikanth Yoginath
- Anees Alnajjar
- James A Haynes
- James J Nutaro
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pratishtha Shukla
- Ryan Dehoff
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Post
- Christopher Bowland
- Christopher Fancher
- Craig A Bridges
- Dean T Pierce
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Holly Humphrey
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Sheng Dai
- Sudarsanam Babu
- Sumit Gupta
- Sunyong Kwon
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- William Peter
- Ying Yang
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.