Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Alex Plotkowski
- Amit Shyam
- Srikanth Yoginath
- Adam Willoughby
- Alice Perrin
- Anees Alnajjar
- Beth L Armstrong
- Bruce A Pint
- Edgar Lara-Curzio
- Hongbin Sun
- James A Haynes
- James J Nutaro
- Prashant Jain
- Pratishtha Shukla
- Rishi Pillai
- Ryan Dehoff
- Sergiy Kalnaus
- Steven J Zinkle
- Sudip Seal
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Ali Passian
- Andres Marquez Rossy
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- Craig A Bridges
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Ian Greenquist
- Ilias Belharouak
- Jaswinder Sharma
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mariam Kiran
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nate See
- Nicholas Richter
- Nidia Gallego
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Ruhul Amin
- Shajjad Chowdhury
- Sheng Dai
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Varisara Tansakul
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.