Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ying Yang
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Yong Chae Lim
- Zhili Feng
- Alice Perrin
- Blane Fillingim
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- Jian Chen
- Lauren Heinrich
- Radu Custelcean
- Rangasayee Kannan
- Ryan Dehoff
- Steven J Zinkle
- Thomas Feldhausen
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alexander I Wiechert
- Alex Plotkowski
- Amit Shyam
- Bruce A Pint
- Bryan Lim
- Christopher Ledford
- Dali Wang
- Debangshu Mukherjee
- Gerry Knapp
- James A Haynes
- Jiheon Jun
- Jong K Keum
- Md Inzamam Ul Haque
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ramanan Sankaran
- Roger G Miller
- Sarah Graham
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Vimal Ramanuj
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.