Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Brian Post
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Blane Fillingim
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Lauren Heinrich
- Matt Korey
- Peeyush Nandwana
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Subhabrata Saha
- Xianhui Zhao
- Yousub Lee
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alexander I Wiechert
- Amber Hubbard
- Ben Lamm
- Cait Clarkson
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Debangshu Mukherjee
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gs Jung
- Gyoung Gug Jang
- Jeremy Malmstead
- Jesse Heineman
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marm Dixit
- Md Inzamam Ul Haque
- Merlin Theodore
- Michael Kirka
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Radu Custelcean
- Ramanan Sankaran
- Ryan Ogle
- Sana Elyas
- Shajjad Chowdhury
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Vimal Ramanuj
- Wenjun Ge

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).