Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Hongbin Sun
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Soydan Ozcan
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao
- Yousub Lee
- Alexander I Wiechert
- Alex Roschli
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Ilias Belharouak
- Jeremy Malmstead
- Kitty K Mccracken
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Ramanan Sankaran
- Ruhul Amin
- Sanjita Wasti
- Thien D. Nguyen
- Tyler Smith
- Vimal Ramanuj
- Vishaldeep Sharma
- Wenjun Ge

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.