Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Olga S Ovchinnikova
- Peeyush Nandwana
- Sergei V Kalinin
- Soydan Ozcan
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao
- Yousub Lee
- Alexander I Wiechert
- Alex Roschli
- Anton Ievlev
- Bogdan Dryzhakov
- Costas Tsouris
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Jeremy Malmstead
- Kevin M Roccapriore
- Kitty K Mccracken
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Neus Domingo Marimon
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Radu Custelcean
- Ramanan Sankaran
- Sanjita Wasti
- Stephen Jesse
- Steven Randolph
- Tyler Smith
- Vimal Ramanuj
- Wenjun Ge
- Yongtao Liu

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.