Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Akash Jag Prasad
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Charlie Cook
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debangshu Mukherjee
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Md Inzamam Ul Haque
- Nedim Cinbiz
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Radu Custelcean
- Ramanan Sankaran
- Ryan Dehoff
- Sandra Davern
- Tony Beard
- Vimal Ramanuj
- Vladimir Orlyanchik
- Wenjun Ge
- Zackary Snow

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.