Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Brad Johnson
- Bruce A Pint
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debangshu Mukherjee
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Md Inzamam Ul Haque
- Meghan Lamm
- Nedim Cinbiz
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Radu Custelcean
- Ramanan Sankaran
- Sandra Davern
- Shajjad Chowdhury
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Tony Beard
- Vimal Ramanuj
- Weicheng Zhong
- Wei Tang
- Wenjun Ge
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.