Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ying Yang
- Adam Willoughby
- Ali Abouimrane
- Bruce A Pint
- Edgar Lara-Curzio
- Gurneesh Jatana
- Jonathan Willocks
- Rishi Pillai
- Ruhul Amin
- Steven J Zinkle
- Todd Toops
- Yanli Wang
- Yeonshil Park
- Yutai Kato
- Alexander I Wiechert
- Alexey Serov
- Alice Perrin
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles F Weber
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- David L Wood III
- Dhruba Deka
- Diana E Hun
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gina Accawi
- Haiying Chen
- Hongbin Sun
- James Szybist
- Jaswinder Sharma
- Jiheon Jun
- Joanna Mcfarlane
- Junbin Choi
- Lu Yu
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Ryan Dehoff
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Tim Graening Seibert
- Tolga Aytug
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Weicheng Zhong
- Wei Tang
- William P Partridge Jr
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.