Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Peeyush Nandwana
- Ryan Dehoff
- Amit Shyam
- Beth L Armstrong
- Chris Masuo
- Vincent Paquit
- Brian Post
- Michael Kirka
- Peter Wang
- Rangasayee Kannan
- Alex Plotkowski
- Alex Walters
- Jun Qu
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Ying Yang
- Yong Chae Lim
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Blane Fillingim
- Brian Gibson
- Christopher Ledford
- Clay Leach
- Corson Cramer
- Costas Tsouris
- Gurneesh Jatana
- James A Haynes
- Jonathan Willocks
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Meghan Lamm
- Philip Bingham
- Steve Bullock
- Sumit Bahl
- Thomas Feldhausen
- Todd Toops
- Tomas Grejtak
- Udaya C Kalluri
- William Carter
- Yeonshil Park
- Yousub Lee
- Akash Jag Prasad
- Alexander I Wiechert
- Alexey Serov
- Andres Marquez Rossy
- Benjamin Manard
- Ben Lamm
- Bruce A Pint
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charles F Weber
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- David J Mitchell
- Dean T Pierce
- Dhruba Deka
- Diana E Hun
- Erin Webb
- Ethan Self
- Evin Carter
- Gabriel Veith
- Gerry Knapp
- Gina Accawi
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Haiying Chen
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Klett
- James Parks II
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- Joanna Mcfarlane
- John Potter
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Kitty K Mccracken
- Liam White
- Mark M Root
- Marm Dixit
- Matthew S Chambers
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Nancy Dudney
- Nicholas Richter
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Priyanshi Agrawal
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Soydan Ozcan
- Sreshtha Sinha Majumdar
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Tyler Smith
- Vandana Rallabandi
- Venugopal K Varma
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- William Peter
- William P Partridge Jr
- Xiang Chen
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zackary Snow
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.