Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Emilio Piesciorovsky
- Yaosuo Xue
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ali Riza Ekti
- Elizabeth Piersall
- Eve Tsybina
- Fei Wang
- Gary Hahn
- Nils Stenvig
- Nithin Panicker
- Ozgur Alaca
- Phani Ratna Vanamali Marthi
- Prashant Jain
- Rafal Wojda
- Raymond Borges Hink
- Sreenivasa Jaldanki
- Subho Mukherjee
- Suman Debnath
- Sunil Subedi
- Viswadeep Lebakula
- Vittorio Badalassi
- Vivek Sujan
- Yarom Polsky
- Yonghao Gui

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.