Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alex Plotkowski
- Amit Shyam
- Peeyush Nandwana
- Blane Fillingim
- Brian Post
- James A Haynes
- Lauren Heinrich
- Sudarsanam Babu
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Alice Perrin
- Andres Marquez Rossy
- Gerry Knapp
- Jovid Rakhmonov
- Nicholas Richter
- Nithin Panicker
- Prashant Jain
- Ramanan Sankaran
- Ryan Dehoff
- Sunyong Kwon
- Vimal Ramanuj
- Vittorio Badalassi
- Wenjun Ge
- Ying Yang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.

The vast majority of energy conversion technologies and industrial processes depend on heat exchangers for transferring heat between fluids.