Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- William Carter
- Alexey Serov
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Jaswinder Sharma
- Luke Meyer
- Xiang Lyu
- Adam Stevens
- Alexandre Sorokine
- Alex Walters
- Amit K Naskar
- Amy Elliott
- Beth L Armstrong
- Cameron Adkins
- Clinton Stipek
- Daniel Adams
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Isha Bhandari
- James Szybist
- Jeremy Malmstead
- Jessica Moehl
- Jonathan Willocks
- Joshua Vaughan
- Junbin Choi
- Khryslyn G Araño
- Kitty K Mccracken
- Liam White
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Peter Wang
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Taylor Hauser
- Todd Toops
- Tyler Smith
- Viswadeep Lebakula
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.