Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Xiang Lyu
- Alexandre Sorokine
- Amit K Naskar
- Andrew F May
- Annetta Burger
- Ben Garrison
- Ben LaRiviere
- Beth L Armstrong
- Brad Johnson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Clinton Stipek
- Craig Blue
- Daniel Adams
- Daniel Rasmussen
- David L Wood III
- Debraj De
- Gabriel Veith
- Gautam Malviya Thakur
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- James Szybist
- Jesse McGaha
- Jessica Moehl
- John Lindahl
- Jonathan Willocks
- Junbin Choi
- Kevin Sparks
- Khryslyn G Araño
- Liz McBride
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mike Zach
- Nance Ericson
- Nedim Cinbiz
- Nihal Kanbargi
- Paul Groth
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Ritu Sahore
- Taylor Hauser
- Todd Thomas
- Todd Toops
- Tony Beard
- Viswadeep Lebakula
- Xiuling Nie
- Yaocai Bai
- Zhijia Du

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.