Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Mike Zach
- Ruhul Amin
- Alexandre Sorokine
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Clinton Stipek
- Craig Blue
- Daniel Adams
- Daniel Rasmussen
- David L Wood III
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Georgios Polyzos
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Jessica Moehl
- John Lindahl
- Junbin Choi
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Lu Yu
- Marm Dixit
- Nedim Cinbiz
- Padhraic L Mulligan
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Sandra Davern
- Taylor Hauser
- Todd Thomas
- Tony Beard
- Viswadeep Lebakula
- Xiuling Nie
- Yaocai Bai
- Zhijia Du

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.