Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Tyler
- Beth L Armstrong
- Chris Masuo
- Justin West
- Peter Wang
- Ritin Mathews
- Alex Walters
- Amit Shyam
- Jun Qu
- Alex Plotkowski
- Brian Gibson
- Corson Cramer
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Joshua Vaughan
- Luke Meyer
- Meghan Lamm
- Scott Smith
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Ben Lamm
- Brian Post
- Bryan Lim
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- David J Mitchell
- Emma Betters
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jordan Wright
- Josh B Harbin
- Jovid Rakhmonov
- Khryslyn G Araño
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Rangasayee Kannan
- Riley Wallace
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Tolga Aytug
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Ying Yang
- Yiyu Wang

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.