Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Ali Passian
- Justin West
- Ritin Mathews
- Joseph Chapman
- Nicholas Peters
- David Olvera Trejo
- Hsuan-Hao Lu
- J.R. R Matheson
- Jaydeep Karandikar
- Joseph Lukens
- Muneer Alshowkan
- Scott Smith
- Akash Jag Prasad
- Anees Alnajjar
- Brian Gibson
- Brian Post
- Brian Williams
- Calen Kimmell
- Claire Marvinney
- Emma Betters
- Greg Corson
- Harper Jordan
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Potter
- Josh B Harbin
- Mariam Kiran
- Nance Ericson
- Srikanth Yoginath
- Tony L Schmitz
- Varisara Tansakul
- Vladimir Orlyanchik

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.