Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Isabelle Snyder
- Alexey Serov
- David Olvera Trejo
- Emilio Piesciorovsky
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Scott Smith
- Xiang Lyu
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Akash Jag Prasad
- Ali Riza Ekti
- Amit K Naskar
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Calen Kimmell
- Elizabeth Piersall
- Emma Betters
- Eve Tsybina
- Gabriel Veith
- Gary Hahn
- Georgios Polyzos
- Greg Corson
- Holly Humphrey
- James Szybist
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Josh B Harbin
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Nils Stenvig
- Ozgur Alaca
- Raymond Borges Hink
- Ritu Sahore
- Subho Mukherjee
- Todd Toops
- Tony L Schmitz
- Viswadeep Lebakula
- Vivek Sujan
- Vladimir Orlyanchik
- Yarom Polsky

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.