Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Brian Post
- William Carter
- Alex Roschli
- Andrzej Nycz
- Chris Masuo
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Luke Meyer
- Scott Smith
- Adam Stevens
- Akash Jag Prasad
- Alexander I Wiechert
- Alex Walters
- Amy Elliott
- Benjamin Manard
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Charles F Weber
- Costas Tsouris
- Emma Betters
- Erin Webb
- Evin Carter
- Govindarajan Muralidharan
- Greg Corson
- Isaac Sikkema
- Isha Bhandari
- Jeremy Malmstead
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh B Harbin
- Joshua Vaughan
- Kitty K Mccracken
- Kunal Mondal
- Liam White
- Mahim Mathur
- Matt Vick
- Michael Borish
- Mingyan Li
- Oluwafemi Oyedeji
- Oscar Martinez
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sam Hollifield
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Thomas R Muth
- Tony L Schmitz
- Tyler Smith
- Vandana Rallabandi
- Venugopal K Varma
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.