Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- David Olvera Trejo
- Hongbin Sun
- J.R. R Matheson
- Jaydeep Karandikar
- Prashant Jain
- Scott Smith
- Akash Jag Prasad
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Brian Post
- Calen Kimmell
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Emma Betters
- Fred List III
- Govindarajan Muralidharan
- Greg Corson
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jesse Heineman
- Joanna Mcfarlane
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh B Harbin
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Thomas Butcher
- Thomas R Muth
- Tony L Schmitz
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

Current fuel used in nuclear light water reactors that generate energy for the grid use a solid form of uranium that is heated and processed to form pellets.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.

The invention ensures post-validation calibrated physics system predictions remain within predetermined model validation domain boundaries.

The vast majority of energy conversion technologies and industrial processes depend on heat exchangers for transferring heat between fluids.