Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Rafal Wojda
- Ritin Mathews
- Ying Yang
- Prasad Kandula
- Alex Plotkowski
- Alice Perrin
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Scott Smith
- Steven J Zinkle
- Vandana Rallabandi
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Amit Shyam
- Brian Gibson
- Brian Post
- Bruce A Pint
- Calen Kimmell
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Emma Betters
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jesse Heineman
- John Potter
- Jong K Keum
- Josh B Harbin
- Marcio Magri Kimpara
- Michael Kirka
- Mina Yoon
- Mostak Mohammad
- Nicholas Richter
- Omer Onar
- Patxi Fernandez-Zelaia
- Praveen Kumar
- Radu Custelcean
- Ryan Dehoff
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tony L Schmitz
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.