Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Chris Tyler
- Corson Cramer
- Justin West
- Ritin Mathews
- Ahmed Hassen
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Yong Chae Lim
- Zhili Feng
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Jian Chen
- Rangasayee Kannan
- Scott Smith
- Steven Guzorek
- Wei Zhang
- Adam Stevens
- Akash Jag Prasad
- Beth L Armstrong
- Brian Gibson
- Brittany Rodriguez
- Bryan Lim
- Calen Kimmell
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dali Wang
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Emma Betters
- Greg Corson
- Jesse Heineman
- Jiheon Jun
- John Lindahl
- John Potter
- Jordan Wright
- Josh B Harbin
- Michael Kirka
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sana Elyas
- Sarah Graham
- Subhabrata Saha
- Sudarsanam Babu
- Tomas Grejtak
- Tomonori Saito
- Tony Beard
- Tony L Schmitz
- Tyler Smith
- Vipin Kumar
- Vladimir Orlyanchik
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.