Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Hongbin Sun
- Yong Chae Lim
- Zhili Feng
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Jian Chen
- Rangasayee Kannan
- Scott Smith
- Wei Zhang
- Adam Stevens
- Akash Jag Prasad
- Brian Gibson
- Bryan Lim
- Calen Kimmell
- Dali Wang
- Emma Betters
- Greg Corson
- Ilias Belharouak
- Jesse Heineman
- Jiheon Jun
- John Potter
- Josh B Harbin
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Thien D. Nguyen
- Tomas Grejtak
- Tony L Schmitz
- Vishaldeep Sharma
- Vladimir Orlyanchik
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.