Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Chris Tyler
- Amit Shyam
- Justin West
- Ritin Mathews
- Alex Plotkowski
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Ryan Dehoff
- Scott Smith
- Sumit Bahl
- Adam Stevens
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Brian Gibson
- Calen Kimmell
- Christopher Fancher
- Dean T Pierce
- Emma Betters
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tony L Schmitz
- Vladimir Orlyanchik
- William Peter
- Ying Yang
- Yukinori Yamamoto

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.