Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Chris Tyler
- Amit Shyam
- Justin West
- Alex Plotkowski
- Rafal Wojda
- Ritin Mathews
- Prasad Kandula
- Brian Post
- Christopher Fancher
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Ryan Dehoff
- Scott Smith
- Sumit Bahl
- Vandana Rallabandi
- Adam Stevens
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Brian Gibson
- Calen Kimmell
- Dean T Pierce
- Emma Betters
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Marcio Magri Kimpara
- Mostak Mohammad
- Nicholas Richter
- Omer Onar
- Peeyush Nandwana
- Peter Wang
- Praveen Kumar
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Shajjad Chowdhury
- Subho Mukherjee
- Sudarsanam Babu
- Suman Debnath
- Sunyong Kwon
- Tony L Schmitz
- Vladimir Orlyanchik
- William Peter
- Ying Yang
- Yukinori Yamamoto

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.