Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Chris Tyler
- Amit Shyam
- Justin West
- Ritin Mathews
- Alex Plotkowski
- Amit K Naskar
- Brian Post
- David Olvera Trejo
- J.R. R Matheson
- James A Haynes
- Jaswinder Sharma
- Jaydeep Karandikar
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Ryan Dehoff
- Scott Smith
- Sumit Bahl
- Adam Stevens
- Akash Jag Prasad
- Alice Perrin
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Brian Gibson
- Calen Kimmell
- Christopher Bowland
- Christopher Fancher
- Dean T Pierce
- Edgar Lara-Curzio
- Emma Betters
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gordon Robertson
- Greg Corson
- Holly Humphrey
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Josh B Harbin
- Jovid Rakhmonov
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Sudarsanam Babu
- Sumit Gupta
- Sunyong Kwon
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Ying Yang
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.