Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Ilias Belharouak
- Justin West
- Ritin Mathews
- Ying Yang
- Alexey Serov
- Ali Abouimrane
- Alice Perrin
- David Olvera Trejo
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Marm Dixit
- Ruhul Amin
- Scott Smith
- Steven J Zinkle
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Alex Plotkowski
- Amit K Naskar
- Amit Shyam
- Ben LaRiviere
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Bruce A Pint
- Calen Kimmell
- Christopher Ledford
- Costas Tsouris
- David L Wood III
- Emma Betters
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- James A Haynes
- James Szybist
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Jong K Keum
- Josh B Harbin
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Paul Groth
- Pradeep Ramuhalli
- Radu Custelcean
- Ritu Sahore
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Tony L Schmitz
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Zhijia Du

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.