Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Steve Bullock
- Chris Tyler
- Adam M Guss
- Corson Cramer
- Justin West
- Josh Michener
- Ritin Mathews
- Ahmed Hassen
- Greg Larsen
- James Klett
- Liangyu Qian
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Andrzej Nycz
- Austin L Carroll
- David Olvera Trejo
- Isaiah Dishner
- J.R. R Matheson
- Jaydeep Karandikar
- Jeff Foster
- John F Cahill
- Kuntal De
- Scott Smith
- Serena Chen
- Steven Guzorek
- Udaya C Kalluri
- Xiaohan Yang
- Akash Jag Prasad
- Alex Walters
- Beth L Armstrong
- Biruk A Feyissa
- Brian Gibson
- Brian Post
- Brittany Rodriguez
- Calen Kimmell
- Carrie Eckert
- Charlie Cook
- Chris Masuo
- Christopher Hershey
- Christopher Ledford
- Clay Leach
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debjani Pal
- Dustin Gilmer
- Emma Betters
- Gerald Tuskan
- Greg Corson
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jesse Heineman
- Joanna Tannous
- John Lindahl
- John Potter
- Jordan Wright
- Josh B Harbin
- Kyle Davis
- Michael Kirka
- Paul Abraham
- Sana Elyas
- Subhabrata Saha
- Tomonori Saito
- Tony Beard
- Tony L Schmitz
- Tyler Smith
- Vilmos Kertesz
- Vincent Paquit
- Vipin Kumar
- Vladimir Orlyanchik
- William Alexander
- Yang Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The technologies provide additively manufactured thermal protection system.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.