Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Adam M Guss
- Justin West
- Michael Kirka
- Ritin Mathews
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Andrzej Nycz
- Brian Post
- Christopher Ledford
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Kuntal De
- Peeyush Nandwana
- Scott Smith
- Udaya C Kalluri
- Vincent Paquit
- Xiaohan Yang
- Akash Jag Prasad
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Austin Carroll
- Beth L Armstrong
- Biruk A Feyissa
- Brian Gibson
- Calen Kimmell
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Corson Cramer
- Debjani Pal
- Emma Betters
- Fred List III
- Gerald Tuskan
- Greg Corson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Klett
- Jay D Huenemann
- Jeff Foster
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Potter
- Josh B Harbin
- Keith Carver
- Kyle Davis
- Liangyu Qian
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Serena Chen
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Vilmos Kertesz
- Vladimir Orlyanchik
- William Peter
- Yan-Ru Lin
- Yang Liu
- Ying Yang
- Yukinori Yamamoto

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.