Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Chris Tyler
- Adam M Guss
- Justin West
- Ritin Mathews
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Kuntal De
- Scott Smith
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Akash Jag Prasad
- Alex Roschli
- Alex Walters
- Austin Carroll
- Brian Gibson
- Brian Post
- Brian Sanders
- Calen Kimmell
- Callie Goetz
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Eddie Lopez Honorato
- Emma Betters
- Erin Webb
- Evin Carter
- Fred List III
- Gerald Tuskan
- Greg Corson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Potter
- Josh B Harbin
- Keith Carver
- Kitty K Mccracken
- Kyle Davis
- Liangyu Qian
- Matt Kurley III
- Mengdawn Cheng
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Serena Chen
- Soydan Ozcan
- Thomas Butcher
- Tony L Schmitz
- Tyler Gerczak
- Tyler Smith
- Vincent Paquit
- Vladimir Orlyanchik
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.