Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Brian Post
- William Carter
- Alex Roschli
- Andrzej Nycz
- Chris Masuo
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Luke Meyer
- Mike Zach
- Scott Smith
- Adam Stevens
- Akash Jag Prasad
- Alex Walters
- Amy Elliott
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Gibson
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Emma Betters
- Erin Webb
- Evin Carter
- Greg Corson
- Hsin Wang
- Isha Bhandari
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Joshua Vaughan
- Justin Griswold
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liam White
- Luke Sadergaski
- Michael Borish
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tony Beard
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.