Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Mike Zach
- Scott Smith
- Akash Jag Prasad
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Gibson
- Brian Post
- Bruce Moyer
- Calen Kimmell
- Callie Goetz
- Charlie Cook
- Christopher Hershey
- Christopher Hobbs
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eddie Lopez Honorato
- Emma Betters
- Fred List III
- Greg Corson
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Justin Griswold
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Nedim Cinbiz
- Padhraic L Mulligan
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Sandra Davern
- Thomas Butcher
- Tony Beard
- Tony L Schmitz
- Tyler Gerczak
- Vladimir Orlyanchik

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

The technologies provide a system and method of needling of veiled AS4 fabric tape.