Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Rama K Vasudevan
- Ritin Mathews
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Singanallur Venkatakrishnan
- Amir K Ziabari
- David Olvera Trejo
- Diana E Hun
- J.R. R Matheson
- Jaydeep Karandikar
- Kyle Kelley
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Scott Smith
- Stephen M Killough
- Vincent Paquit
- Akash Jag Prasad
- Anton Ievlev
- Arpan Biswas
- Brian Gibson
- Brian Post
- Bryan Maldonado Puente
- Calen Kimmell
- Corey Cooke
- Emma Betters
- Gerd Duscher
- Gina Accawi
- Greg Corson
- Gurneesh Jatana
- Jesse Heineman
- John Potter
- Josh B Harbin
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Michael Kirka
- Neus Domingo Marimon
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Peter Wang
- Ryan Kerekes
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Stephen Jesse
- Sumner Harris
- Tony L Schmitz
- Utkarsh Pratiush
- Vladimir Orlyanchik

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.