Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Brian Post
- Kyle Kelley
- Rama K Vasudevan
- Blane Fillingim
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Lauren Heinrich
- Peeyush Nandwana
- Scott Smith
- Sergei V Kalinin
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Akash Jag Prasad
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Gibson
- Calen Kimmell
- Emma Betters
- Greg Corson
- Jesse Heineman
- John Potter
- Josh B Harbin
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ramanan Sankaran
- Stephen Jesse
- Steven Randolph
- Tony L Schmitz
- Vimal Ramanuj
- Vladimir Orlyanchik
- Wenjun Ge
- Yongtao Liu

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.