Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Adam M Guss
- Justin West
- Ritin Mathews
- Ying Yang
- Alice Perrin
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Scott Smith
- Steven J Zinkle
- Xiaohan Yang
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Alex Plotkowski
- Alex Walters
- Amit Shyam
- Andrzej Nycz
- Austin Carroll
- Brian Gibson
- Brian Post
- Bruce A Pint
- Calen Kimmell
- Carrie Eckert
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David S Parker
- Emma Betters
- Gerald Tuskan
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James A Haynes
- Jay D Huenemann
- Jeff Foster
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Potter
- Jong K Keum
- Josh B Harbin
- Kyle Davis
- Liangyu Qian
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Paul Abraham
- Radu Custelcean
- Ryan Dehoff
- Serena Chen
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tony L Schmitz
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yang Liu

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.