Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Beth L Armstrong
- Michael Kirka
- Ritin Mathews
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Rangasayee Kannan
- Ryan Dehoff
- Tomonori Saito
- Adam Stevens
- Brian Post
- Christopher Ledford
- David Olvera Trejo
- Ethan Self
- J.R. R Matheson
- Jaswinder Sharma
- Jaydeep Karandikar
- Peeyush Nandwana
- Robert Sacci
- Scott Smith
- Sergiy Kalnaus
- Akash Jag Prasad
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amir K Ziabari
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Brian Gibson
- Calen Kimmell
- Chanho Kim
- Corson Cramer
- Emma Betters
- Felipe Polo Garzon
- Fred List III
- Georgios Polyzos
- Greg Corson
- Ilias Belharouak
- James Klett
- Jesse Heineman
- John Potter
- Josh B Harbin
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peng Yang
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- William Peter
- Xiang Lyu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.